Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2313921121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568968

RESUMO

Malvaceae comprise some 4,225 species in 243 genera and nine subfamilies and include economically important species, such as cacao, cotton, durian, and jute, with cotton an important model system for studying the domestication of polyploids. Here, we use chromosome-level genome assemblies from representatives of five or six subfamilies (depending on the placement of Ochroma) to differentiate coexisting subgenomes and their evolution during the family's deep history. The results reveal that the allohexaploid Helicteroideae partially derive from an allotetraploid Sterculioideae and also form a component of the allodecaploid Bombacoideae and Malvoideae. The ancestral Malvaceae karyotype consists of 11 protochromosomes. Four subfamilies share a unique reciprocal chromosome translocation, and two other subfamilies share a chromosome fusion. DNA alignments of single-copy nuclear genes do not yield the same relationships as inferred from chromosome structural traits, probably because of genes originating from different ancestral subgenomes. These results illustrate how chromosome-structural data can unravel the evolutionary history of groups with ancient hybrid genomes.


Assuntos
Genoma de Planta , Gossypium , Genoma de Planta/genética , Gossypium/genética , Genômica/métodos , Poliploidia , Cariótipo , Evolução Molecular
2.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
3.
Ecol Lett ; 27(2): e14379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361469

RESUMO

Mutualisms have driven the evolution of extraordinary structures and behavioural traits, but their impact on traits beyond those directly involved in the interaction remains unclear. We addressed this gap using a highly evolutionarily replicated system - epiphytes in the Rubiaceae forming symbioses with ants. We employed models that allow us to test the influence of discrete mutualistic traits on continuous non-mutualistic traits. Our findings are consistent with mutualism shaping the pace of morphological evolution, strength of selection and long-term mean of non-mutualistic traits in function of mutualistic dependency. While specialised and obligate mutualisms are associated with slower trait change, less intimate, facultative and generalist mutualistic interactions - which are the most common - have a greater impact on non-mutualistic trait evolution. These results challenge the prevailing notion that mutualisms solely affect the evolution of interaction-related traits via stabilizing selection and instead demonstrate a broader role for mutualisms in shaping trait evolution.


Assuntos
Formigas , Evolução Biológica , Animais , Simbiose , Plantas/genética
4.
Syst Biol ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956405

RESUMO

Scientific names permit humans and search engines to access knowledge about the biodiversity that surrounds us, and names linked to DNA sequences are playing an ever-greater role in search-and-match identification procedures. Here, we analyze how users and curators of the National Center for Biotechnology Information (NCBI) are flagging and curating sequences derived from nomenclatural type material, which is the only way to improve the quality of DNA-based identification in the long run. For prokaryotes, 18,281 genome assemblies from type strains have been curated by NCBI staff and improve the quality of prokaryote naming. For Fungi, type-derived sequences representing over 21,000 species are now essential for fungus naming and identification. For the remaining eukaryotes, however, the numbers of sequences identifiable as type-derived are minuscule, representing only 1,000 species of arthropods, 8,441 vertebrates, and 430 embryophytes. An increase in the production and curation of such sequences will come from (i) sequencing of types or topotypic specimens in museum collections, (ii) the March 2023 rule changes at the International Nucleotide Sequence Database Collaboration requiring more metadata for specimens, and (iii) efforts by data submitters to facilitate curation, including informing NCBI curators about a specimen's type status. We illustrate different type-data submission journeys and provide best-practice examples from a range of organisms. Expanding the number of type-derived sequences in DNA databases, especially of eukaryotes, is crucial for capturing, documenting, and protecting biodiversity.

5.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
6.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872262

RESUMO

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Assuntos
Ecossistema , Árvores , Humanos , Árvores/metabolismo , Florestas , Folhas de Planta/metabolismo , Hábitos , Carbono/metabolismo
10.
Science ; 381(6653): eadf5098, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410847

RESUMO

Climate change is shifting the growing seasons of plants, affecting species performance and biogeochemical cycles. Yet how the timing of autumn leaf senescence in Northern Hemisphere forests will change remains uncertain. Using satellite, ground, carbon flux, and experimental data, we show that early-season and late-season warming have opposite effects on leaf senescence, with a reversal occurring after the year's longest day (the summer solstice). Across 84% of the northern forest area, increased temperature and vegetation activity before the solstice led to an earlier senescence onset of, on average, 1.9 ± 0.1 days per °C, whereas warmer post-solstice temperatures extended senescence duration by 2.6 ± 0.1 days per °C. The current trajectories toward an earlier onset and slowed progression of senescence affect Northern Hemisphere-wide trends in growing-season length and forest productivity.


Assuntos
Mudança Climática , Folhas de Planta , Senescência Vegetal , Ecossistema , Florestas , Estações do Ano , Temperatura
11.
Curr Biol ; 33(11): R453-R455, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279669

RESUMO

Most of the world's ecosystems are dominated by plants, and preserving the natural and agricultural landscapes that we depend on therefore requires understanding plants and their interactions at local and global scales. This is challenging because plants' ways of perceiving each other and communicating with each other and with animals are so fundamentally different from the ways we animals communicate with, and manipulate, each other. The collection of articles in the present issue of Current Biology illustrates the progress being made in deciphering some of the processes and mechanisms involved in plant interactions at different scales. While the topic of interactions with plants is very broad, any overview will require covering chemical signals and their reception; mutualisms and symbioses; interactions with pathogens; and interactions in communities. Approaches taken in these fields range from molecular biology and physiology to ecology.


Assuntos
Ecossistema , Plantas , Animais , Ecologia , Simbiose
12.
J Hist Biol ; 56(1): 97-124, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36943667

RESUMO

Alexander von Humboldt's depictions of mountain vegetation are among the most iconic nineteenth century illustrations in the biological sciences. Here we analyse the contemporary context and empirical data for all these depictions, namely the Tableau physique des Andes (1803, 1807), the Geographiae plantarum lineamenta (1815), the Tableau physique des Îles Canaries (1817), and the Esquisse de la Géographie des plantes dans les Andes de Quito (1824/1825). We show that the Tableau physique des Andes does not reflect Humboldt and Bonpland's field data and presents a flawed depiction of plant occurrences and vertical succession of vegetation belts, arising from Humboldt's misreading of La Condamine's description (1751). Humboldt's 1815 depiction, by contrast, shows a distribution of high-vegetation belts that is consistent with La Condamine's description, while the 1824 depiction drops innovations made in 1815 and returns to simply showing numerous species' names, thus not applying Humboldt's own earlier zonation framework. Our analysis of contemporary reactions to Humboldt's TPA includes Francis Hall's posthumously published 1834 illustration of Andean plant zonation near Quito and Humboldt's reaction to Hall's critique. Throughout his work on plant geography, Humboldt disregarded some of his own observations, or confused them. At stake was his reputation as an innovator in the field of plant geography and a discoverer of the sequence of high-elevation vegetation belts on the world's mountains.


Assuntos
Disciplinas das Ciências Biológicas , Plantas , Geografia
13.
Nat Commun ; 14(1): 617, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739280

RESUMO

In lineages of allopolyploid origin, sets of homoeologous chromosomes may coexist that differ in gene content and syntenic structure. Presence or absence of genes and microsynteny along chromosomal blocks can serve to differentiate subgenomes and to infer phylogenies. We here apply genome-structural data to infer relationships in an ancient allopolyploid lineage, the walnut family (Juglandaceae), by using seven chromosome-level genomes, two of them newly assembled. Microsynteny and gene-content analyses yield identical topologies that place Platycarya with Engelhardia as did a 1980s morphological-cladistic study. DNA-alignment-based topologies here and in numerous earlier studies instead group Platycarya with Carya and Juglans, perhaps misled by past hybridization. All available data support a hybrid origin of Juglandaceae from extinct or unsampled progenitors nested within, or sister to, Myricaceae. Rhoiptelea chiliantha, sister to all other Juglandaceae, contains proportionally more DNA repair genes and appears to evolve at a rate 2.6- to 3.5-times slower than the remaining species.


Assuntos
Carya , Juglandaceae , Filogenia , Juglandaceae/genética , Genoma , Carya/genética , Reparo do DNA/genética
15.
Nucleic Acids Res ; 51(D1): D1457-D1464, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36271794

RESUMO

The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.


Assuntos
Cucurbitaceae , Genoma de Planta , Genômica , Sintenia , Cucurbitaceae/genética , Bases de Dados Factuais , Bases de Dados Genéticas
16.
Elife ; 112022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217820

RESUMO

Animal-pollinated plants have to get pollen to a conspecific stigma while protecting it from getting eaten. Touch-sensitive stamens, which are found in hundreds of flowering plants, are thought to function in enhancing pollen export and reducing its loss, but experimental tests are scarce. Stamens of Berberis and Mahonia are inserted between paired nectar glands and when touched by an insect's tongue rapidly snap forward so that their valvate anthers press pollen on the insect's tongue or face. We immobilized the stamens in otherwise unmodified flowers and studied pollen transfer in the field and under enclosed conditions. On flowers with immobilized stamens, the most common bee visitor stayed up to 3.6× longer, yet removed 1.3× fewer pollen grains and deposited 2.1× fewer grains on stigmas per visit. Self-pollen from a single stamen hitting the stigma amounted to 6% of the grains received from single bee visits. Bees discarded pollen passively placed on their bodies, likely because of its berberine content; nectar has no berberine. Syrphid flies fed on both nectar and pollen, taking more when stamens were immobilized. Pollen-tracking experiments in two Berberis species showed that mobile-stamen-flowers donate pollen to many more recipients. These results demonstrate another mechanism by which plants simultaneously meter out their pollen and reduce pollen theft.


Assuntos
Néctar de Plantas , Polinização , Animais , Abelhas , Flores , Plantas , Pólen , Tato
17.
Genome Biol ; 23(1): 145, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787713

RESUMO

BACKGROUND: Persian walnut, Juglans regia, occurs naturally from Greece to western China, while its closest relative, the iron walnut, Juglans sigillata, is endemic in southwest China; both species are cultivated for their nuts and wood. Here, we infer their demographic histories and the time and direction of possible hybridization and introgression between them. RESULTS: We use whole-genome resequencing data, different population-genetic approaches (PSMC and GONE), and isolation-with-migration models (IMa3) on individuals from Europe, Iran, Kazakhstan, Pakistan, and China. IMa3 analyses indicate that the two species diverged from each other by 0.85 million years ago, with unidirectional gene flow from eastern J. regia and its ancestor into J. sigillata, including the shell-thickness gene. Within J. regia, a western group, located from Europe to Iran, and an eastern group with individuals from northern China, experienced dramatically declining population sizes about 80 generations ago (roughly 2400 to 4000 years), followed by an expansion at about 40 generations, while J. sigillata had a constant population size from about 100 to 20 generations ago, followed by a rapid decline. CONCLUSIONS: Both J. regia and J. sigillata appear to have suffered sudden population declines during their domestication, suggesting that the bottleneck scenario of plant domestication may well apply in at least some perennial crop species. Introgression from introduced J. regia appears to have played a role in the domestication of J. sigillata.


Assuntos
Juglans , Domesticação , Genômica , Humanos , Ferro , Juglans/genética , Nozes/genética
18.
Mol Biol Evol ; 39(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35907246

RESUMO

Iconographic evidence from Egypt suggests that watermelon pulp was consumed there as a dessert by 4,360 BP. Earlier archaeobotanical evidence comes from seeds from Neolithic settlements in Libya, but whether these were watermelons with sweet pulp or other forms is unknown. We generated genome sequences from 6,000- and 3,300-year-old seeds from Libya and Sudan, and from worldwide herbarium collections made between 1824 and 2019, and analyzed these data together with resequenced genomes from important germplasm collections for a total of 131 accessions. Phylogenomic and population-genomic analyses reveal that (1) much of the nuclear genome of both ancient seeds is traceable to West African seed-use "egusi-type" watermelon (Citrullus mucosospermus) rather than domesticated pulp-use watermelon (Citrullus lanatus ssp. vulgaris); (2) the 6,000-year-old watermelon likely had bitter pulp and greenish-white flesh as today found in C. mucosospermus, given alleles in the bitterness regulators ClBT and in the red color marker LYCB; and (3) both ancient genomes showed admixture from C. mucosospermus, C. lanatus ssp. cordophanus, C. lanatus ssp. vulgaris, and even South African Citrullus amarus, and evident introgression between the Libyan seed (UMB-6) and populations of C. lanatus. An unexpected new insight is that Citrullus appears to have initially been collected or cultivated for its seeds, not its flesh, consistent with seed damage patterns induced by human teeth in the oldest Libyan material.


Assuntos
Citrullus , Mapeamento Cromossômico , Citrullus/genética , Domesticação , Genômica , Sementes/genética
19.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210210, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35306895

RESUMO

Linnaeus's very first opus, written when he was 22 years old, dealt with the analogy that exists between plants and animals in how they 'propagate their species', and a revised version with a plate depicting the union of male and female Mercurialis annua plants became a foundational text on the sexuality of plants. The question how systems with separate males and females have evolved in sedentary organisms that appear ancestrally bisexual has fascinated biologists ever since. The phenomenon, termed dioecy, has important consequences for plant reproductive success and is of commercial interest since it affects seed quality and fruit production. This theme issue presents a series of articles that synthesize and challenge the current understanding of how plants achieve dioecy. The articles deal with a broad set of taxa, including Coccinia, Ginkgo, Mercurialis, Populus, Rumex and Silene, as well as overarching topics, such as the field's terminology, analogies with animal sex determination systems, evolutionary pathways to dioecy, dosage compensation, and the longevity of the two sexes. In this introduction, we focus on four topics, each addressed by several articles from different angles and with different conclusions. Our highlighting of unclear or controversial issues may help future studies to build on the current understanding and to ask new questions that will expand our knowledge of plant sexual systems. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Assuntos
Embriófitas , Cromossomos Sexuais , Animais , Embriófitas/genética , Plantas/genética , Reprodução , Cromossomos Sexuais/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210294, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35306898

RESUMO

Microscopically dimorphic sex chromosomes in plants are rare, reducing our ability to study them. One difficulty has been the paucity of cultivatable species pairs for cytogenetic, genomic and experimental work. Here, we study the newly recognized sisters Coccinia grandis and Coccinia schimperi, both with large Y chromosomes as we here show for Co. schimperi. We built genetic maps for male and female Co. grandis using a full-sibling family, inferred gene sex-linkage, and, with Co. schimperi transcriptome data, tested whether X- and Y-alleles group by species or by sex. Most sex-linked genes for which we could include outgroups grouped the X- and Y-alleles by species, but some 10% instead grouped the two species' X-alleles. There was no relationship between XY synonymous-site divergences in these genes and gene position on the non-recombining part of the X, suggesting recombination arrest shortly before or after species divergence, here dated to about 3.6 Ma. Coccinia grandis and Co. schimperi are the species pair with the most heteromorphic sex chromosomes in vascular plants (the condition in their sister remains unknown), and future work could use them to study mechanisms of Y chromosome enlargement and parallel degeneration, or to test Haldane's rule about lower hybrid fitness in the heterogametic sex. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Assuntos
Cromossomos de Plantas , Cucurbitaceae , Cromossomos de Plantas/genética , Cucurbitaceae/genética , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...